Al-Aomar, R. (2006). Incorporating robustness into genetic algorithm search of stochastic simulation outputs. Simulation Modelling Practice and Theory, 14(3), 201-223.
Angilella, V. (2018). Optimal Design of Fiber to The Home Networks. Institut National des Télécommunications.
Angilella, V., Chardy, M. and Ben-Ameur, W. (2018). Fiber cable network design in tree networks. European Journal of Operational Research, 269(3), 1086-1106.
Badri Ahmadi, H., Hashemi Petrudi, S. H. and Wang, X. (2017). Integrating sustainability into supplier selection with analytical hierarchy process and improved grey relational analysis: A case of telecom industry. International Journal of Advanced Manufacturing Technology, 90, 2413-2427.
Büyüközkan, G. and şakir Ersoy, M. (2009). Applying fuzzy decision making approach to it outsourcing supplier selection. System, 2, 2.
Cardwell, R. H., Fowler, H., Lemberg, H. L. and Monma, C. L. (1988). Determining the impact of fiber optic technology on telephone network design. Bellcore Exchange Magazine, 27-32.
Cardwell, R. H., Monma, C. L. and Wu, T. H. (1989). Computer-aided design procedures for survivable fiber optic networks. IEEE Journal on Selected Areas in Communications, 7(8), 1188-1197.
Chudley, R., and Greeno, R. (2020). The structure. Building Construction Handbook, 3(3), 17-23.
Coello, C. C. and Lechuga, M. S. (2002). MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), 2, 1051-1056, IEEE.
Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
Dehghani, E., Pishvaee, M. S. and Jabalameli, M. S. (2018). A hybrid markov process-mathematical programming approach for joint location-inventory problem under supply disruptions. RAIRO-Operations Research, 52(4-5), 1147-1173.
Dengiz, B., Altiparmak, F. and Smith, A. E. (1997). Local search genetic algorithm for optimal design of reliable networks. IEEE transactions on Evolutionary Computation, 1(3), 179-188.
Fieldsend, J. E. and Singh, S. (2002). A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence.
Golberg, D. E. (1989). Genetic Algorithms in Search, Optimization, And Machine Learning. Addion Wesley. Reading.
Hamzadayi, A. and Yildiz, G. (2013). A simulated annealing algorithm based approach for balancing and sequencing of mixed-model U-lines. Computers & Industrial Engineering, 66(4), 1070-1084.
Hu, X. and Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02 (Cat. No. 02TH8600), 2, 1677-1681.
Inuiguchi, M. and Ramık, J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111(1), 3-28.
Kennedy, J. and Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation, 5, 4104-4108, IEEE.
Koh, S. J. and Lee, C. Y. (1995). A tabu search for the survivable fiber optic communication network design. Computers & Industrial Engineering, 28(4), 689-700.
Mathur, Y. P., Kumar, R. and Pawde, A. (2010). A binary particle swarm optimisation for generating optimal schedule of lateral canals. The IES Journal Part A: Civil & Structural Engineering, 3(2), 111-118.
Menten, T. (1991). Quality engineering using robust design. Technometrics, 33(2), 235-236.
Monma, C. L. and Shallcross, D. F. (1989). Methods for designing communications networks with certain two-connected survivability constraints. Operations Research, 37(4), 531-541.
Montgomery, D. C. (2017). Design and Analysis of Experiments. John wiley & sons.
Mostaghim, S. and Teich, J. (2003). Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), 26-33, IEEE.
Parsopóulos, K. E. and Vrahatis, M. N. (2002). Particle swarm optimization method in multiobjective problems. In Proceedings of the 2002 ACM symposium on Applied computing, 603-607.
Pishvaee, M. S., Razmi, J. and Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 206, 1-20.
Rabbani, M., Ravanbakhsh, M. and Taheri, M. (2018). Designing of fiber-optic network for the three-level by considering the backbone network and local access networks simultaneously. Advances in Industrial Engineering, 52(3), 379-388.
Rosenberg, R. S. (1970). Stimulation of genetic populations with biochemical properties: i. The model.” Mathematical Biosciences, 7(3-4), 223-57.
Ruiz, R., Maroto, C. and Alcaraz, J. (2006). Two new robust genetic algorithms for the flowshop scheduling problem. Omega, 34(5), 461-476.
Schaffer, J. D. (1985). Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Vanderbilt Univ., Nashville, TN, USA.
Shi, Y. and Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March 25-27, 1998 Proceedings 7, 591-600, Springer Berlin Heidelberg.
Simpson, T. W., Poplinski, J. D., Koch, P. N. and Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with computers, 17, 129-150.
Srinivas, N. and Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
Taguchi, G. (1986). Introduction to Quality Engineering: Designing Quality into Products and Processes. Tokyo: Asian Productivity Organization, Kraus International.
Tajik, M., Makui, A. and Mansouri, N. (2020). Suppliers’ evaluation and ranking in telecommunication infrastructure company using the TOPSIS method in an uncertain environment. In International Conference on Logistics and Supply Chain Management, 84-99.
Tubert-Brohman, I., Sherman, W., Repasky, M. and Beuming, T. (2013). Improved docking of polypeptides with glide. Journal of Chemical Information and Modeling, 53(7), 1689-1699.
Wu, X., Lü, Z. and Glover, F. (2020). A matheuristic for a telecommunication network design problem with traffic grooming. Omega, 90, 102003.
Yazar, B., Arslan, O., Karaşan, O. E. and Kara, B. Y. (2016). Fiber optical network design problems: A case for Turkey. Omega, 63, 23-40.
Zahiri, B., Torabi, S. A., Mousazadeh, M. and Mansouri, S. A. (2015). Blood collection management: Methodology and application. Applied Mathematical Modelling, 39(23-24), 7680-7696.