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Abstract 

   

1 | Introduction  

In production processes, operators or controllers examine the quality of products that may be a bad 

or a good form. Therefore, based on the identified state of the quality of products, different decisions 

should be made by decision-makers at the beginning of each production period. Such decisions 

include: i) doing nothing (continuing the production process), ii) accepting defective products, or (iii) 

renewing (replacing or repairing the machine). Also, the main objective of the production processes 

is to maximize the expected discounted value of profits. From a theoretical perspective, many studies, 

such as Monahan (1982), Ross (1983), White (1988), Valdez-Flores and Feldman (1989), Scarf (1997), 

and Wang (2002), have investigated production processes using a Markov decision-making model. 

The optimal management of machine replacement is an essential problem in industries. Valdez-

Florezand Feldman (1989) presented a review paper focusing on investigating failure distribution with 

constant parameters. Wilson and Popova (1998) provided a Bayesian parametric analysis considering 

parameters with random variables. Grosfeld-Nir (2007) investigated decision-making on machine 
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replacement using a Markov model. Abdi and Taghipour (2019) developed an economic and 

environmental repair/ replacement model. Jafarian-Namin et al. (2021) proposed an integrated model 

including quality, maintenance, and production decisions considering delayed monitoring and ARMA 

control chart approaches. Hu et al. (2021) proposed a maintenance method considering a scheduled 

preventive replacement process. They examined the effect of an age-based preventive replacement 

policy on repairing a production process. Lio et al. (2021) proposed a data-driven Markov Decision 

Process to optimize repairing and replacing medical equipment decisions. Rebaiaia and Aït-Kadi (2021) 

analyzed three maintenance policies, including minimal renovations at defeat, replacement with total 

renewal at the first defeat, and replacement with complete renewal at all failure. Min (2021) investigated 

decision-making in modern sequential using dynamic programming. Pongha et al. (2022) examined the 

best production system considering a machine with time-varying failure and a single good. Pongha et al. 

(2022) analyzed the impacts of machine failures and repairs on the production rate of a hybrid system 

of producing and repairing. Recently, Yousefi et al. (2022) improved a new dynamic maintenance policy 

by applying a deep reinforcement learning approach. Wang (2022) improved an integrated queueing 

inventory and reliability model for controlling replacement and production processes considering time-

dependent performance measures. 

In this paper, we consider Bayesian inference, dynamic programming, and cost and probability functions 

to determine the optimal policy. The main objectives of this study are to: i) minimize costs and ii) 

maximize the probability of correct decision-making.  

In addition, the contributions of this study are to: (i) design a decision system to find the optimal decision 

about machine maintenance by applying Bayesian inference and dynamic programming, (ii) make a 

decision among tube strategies, including replacing the machine, continuing the production process, and 

repairing the machine to attain the better performance of the production system and achieve a minimum 

hazard rate. 

The rest of this research is as follows: the assumptions of this study are discussed in Section 2. In Section 

3, the notations of the model are defined. Section 4 provides model formulations. In Section 5, a solution 

algorithm is proposed. A numerical example is provided in Section 6, and finally, Section 7 concludes 

the paper and discusses future research directions. 

 

2. Assumptions 

In this study, it is assumed that the random variable 𝜆 follows a Gamma distribution. Three policies are 

categorized as the optimal decisions in each period as follows: i) replacing the machine, ii) continuing 

the production process, and iii) repairing the machine. The best policy can be obtained by applying both 

the dynamic model and the Bayesian estimation method. 

In this paper, we extend the machine replacement model proposed in the study of Niaki and 

Fallahnezhad (2007). They used dynamic programming and Bayesian inference approaches for decision-

making in the production environment. In addition, they assumed that the rate of producing defective 

goods in each stage is fixed. Conversely, our study considers that the rate of producing faulty goods is 

not fixed. Specifically, if the “producing process” decision is made, then the rate of producing defective 

goods in the next step will increase from 𝜆 to 𝜙. 𝜆. This is because the maintenance process is not done, 

and accordingly, the number of defective items will increase. Moreover, if the “repairing the machine” 

decision is made, then the rate of producing defective items will decrease form 𝜆to 𝜑. 𝜆, because the 

maintenance work is done and therefore, the number of defective items will decrease. Note that 𝜙 > 1 

and 𝜑 < 1. 
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It is assumed that the producing time of the defective products follows an exponential distribution with a 

hazard rate parameter 𝜆. Note that 𝑡𝑖 shows the producing time between the two successive defective 

products, and 𝑚 denotes the number of defective items. The following posterior distribution is formulated 

based on the study by Nair et al. (2001). 

 

 

in which f (.) is the probability distribution of 𝜆. Additionally, system costs include the (i) replacing the 

machine cost, (ii) continuing the production process cost, and (iii) repairing the machine cost.  

 

3. Notations 

The notations of this paper are defined as follows; 

𝑛: Remained stages in decision-making (stage variable in dynamic programming) 

𝜆: The hazard rate (state variable in the dynamic programming)  

𝑡𝑖: The time between the production of (𝑖 − 1)𝑡ℎ and (𝑖)𝑡ℎ defective products in a production cycle 

𝑚: The number of defective products 

𝑓: The probability density function of 𝜆 

𝑅: The machine replacement cost 

𝑇: The machine repair cost 

𝐶: The unit cost of defective goods in an order 

𝑉𝑛(𝜆): The cost related to 𝜆 when there exist 𝑛 stages in the decision-making 

𝑊𝑛(𝜆): The correct choice probability related to 𝜆 when there exist 𝑛 stages in the decision-making 

𝑑𝑛: The upper bound of𝜆 (If 𝜆 ≥ 𝑑𝑛, then the production process will be stopped) 

𝑑𝑛′: The lower threshold of 𝜆 (If 𝜆 ≤ 𝑑𝑛′, then the production process will be continued) 

𝛿1: The accepted quality level (AQL) of the batch 

𝛿2: The lot tolerance proportion defective (LTPD) of the batch 

𝜆1: The AQL of the hazard rate 

𝜆2: The LTPD of the hazard rate 

𝐶𝑆: The event of making the right decision 

𝑓(𝜆) ∈ 𝐺𝑎𝑚𝑚𝑎(𝛼 = 𝑚, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

) (1) 



4 

 

4 

Y
o

u
se

fi
-B

a
b

a
d

i,
 F

a
ll

a
h

n
e
z
h

a
d

|
 JD

M
T

P
, 
1(

1)
 1

-1
2

 

 

휀1: The probability of occurring type I error in decision-making 

휀2: The probability of occurring type II error in decision-making 

𝐻: The actual time of production 

𝐷: The size of a batch in an order 

𝛾: The discount factor of stochastic dynamic programming 

 

4. The model 

The optimal decision should be selected from the three following decisions. 

1) Replacing the machine, 

2) Continuing the production process, 

3) Repairing the machine and going to the next stage.  

The probability of these policies is: 

𝑃(𝜆 ≥ 𝑑𝑛): The probability of the machine replacing 

𝑃(𝜆 ≤ 𝑑𝑛′): The probability of continuing the production process 

1 − 𝑃(𝜆 ≥ 𝑑𝑛) − 𝑃(𝜆 ≤ 𝑑𝑛′): The probability of repairing the machine 

It is noted that 𝑑𝑛 ≥ 𝑑𝑛′because the third probability should not be negative. 

𝑅. 𝑃(𝜆 ≥ 𝑑𝑛): The machine replacement cost 

𝐶.𝐻. 𝜆. 𝑃(𝜆 ≤ 𝑑𝑛′): The cost of continuing the production process 

𝛾. 𝑉𝑛−1(𝜆): The machine repair cost 

Hence, the dynamic cost of the proposed model can be defined as Eq. (2). 

 

 

The cost related to 𝜆 when there exist 𝑛 stages in decision-making is formulated as follows: 

 

 

 

𝐸(𝐶𝑜𝑠𝑡) =

[
 
 
 
𝐸(𝐶𝑜𝑠𝑡|𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)𝑃(𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) +

𝐸 (𝐶𝑜𝑠𝑡 |
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

)𝑃 (
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

) +

𝐸(𝐶𝑜𝑠𝑡|𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)𝑃(𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) ]
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It is assumed that if the production process is accepted, then the rate of producing defective items in the 

next stage will increase from 𝜆 to 𝜙. 𝜆 . If the repair machine decision is chosen, then the rate of making 

defective items will decrease form 𝜆to 𝜑. 𝜆where 𝜙 > 1, 𝜑 < 1. 

To evaluate Equation (3), the probability distribution functions of random variables 𝜆′ = 𝜙. 𝜆 and 𝜆" =

𝜑. 𝜆 should be determined as follows: 

 

 

Therefore, we have: 

 

Also, it is assumed that 𝜆0 ∈ 𝛤(1, 𝜆) ⇒ 𝜆0 ∈ 𝐸𝑥𝑝(𝜆) and 𝑉0(𝜆) = 100𝐸(𝜆) = 100𝜇𝜆. Regarding the 

CS definition, we have: 

 

 

It is noted that 
𝐻𝜆1

𝐷
= 𝛿1 and 

𝐻𝜆2

𝐷
= 𝛿2. Hence, we have: 

 

 

To find the correct decision, the stochastic dynamic equation can be formulated as follows; 

 

 

 

Also, the logit function is used to obtain 𝑊0(𝜆)as 𝑊0(𝜆) =
1

1+𝑒𝑥𝑝(𝜇𝜆)
. In Equation (10), the best value of 

𝐻𝑛(𝜆) is obtained based on the thresholds of 𝑑𝑛 and 𝑑𝑛′ (Niaki and Fallahnezhad 2007).  

 

 

To find the thresholds of 𝑑𝑛 and 𝑑𝑛′, the concept of first and second-type errors is used as follows.  

1) If 𝜆 ≤ 𝜆1 → the stopping probability will be smaller than 휀1, 

2) If 𝜆 ≥ 𝜆2 → the continuing probability will be smaller than 휀2.  

It is noted that 
𝛼

𝛽
 is the mean of Gamma distribution when a process is in a good state. Thus, we have: 

𝜆′ = 𝜑. 𝜆
𝜆′′ = 𝜙. 𝜆

𝑓(𝜆) ∼ 𝛤 (𝛼 = 𝑚, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

)
}
 
 

 
 

⇒

{
 
 

 
 𝑓(𝜆′) ∼ 𝛤 (𝛼,

𝛽

𝜑
)

𝑓(𝜆′′) ∼ 𝛤 (𝛼,
𝛽

𝜙
)

 

(4) 

(5) 

𝑉𝑛−1(𝜑. 𝜆) = 𝑉𝑛−1(𝜆′) 

𝑉𝑛−1(𝜙. 𝜆) = 𝑉𝑛−1(𝜆′′) 
(6) 

𝐸(𝐶𝑆) =

[
 
 
 
𝐸(𝐶𝑆|𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)𝑃(𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) +

𝐸 (𝐶𝑆 |
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

)𝑃 (
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

) +

𝐸(𝐶𝑆|𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)𝑃(𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) ]
 
 
 
 (7) 

𝑃(𝐶𝑆|𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡) = ∫ 𝑓(𝜆)
∞

𝜆2

𝑑𝜆 

 𝑃 (𝐶𝑆 |
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

) = ∫ 𝑓(𝜆)
𝜆1
0

𝑑𝜆 

(8) 
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In such a case, the probability of stopping the production process (Type I error) is as: 

 

 

where 𝑓(𝜆) is the probability function of Gamma distribution with parameters 𝛼 and 𝛽 =
𝛼

𝜆1
. In addition, 

𝐹(𝑑𝑛) is the cumulative probability distribution function of 𝜆 which is evaluated at 𝑑𝑛. 

We define 𝜃1 as the threshold of 𝑑𝑛. Hence 𝐹(𝑑𝑛) is formulated as follows; 

 

Similarly, we define 𝜃2 as the threshold of 𝑑𝑛′. Thus, we have: 

 

 

In this case, the probability of continuing the production process (Type II error) is:  

where 𝑓(𝜆) is the probability function of Gamma distribution with parameters 𝛼 and 𝛽 =
𝛼

𝜆2
. Moreover, 

𝐹(𝑑𝑛′) is the cumulative probability distribution function of 𝜆 which is evaluated at 𝑑𝑛′ . 

We define 𝜃2 as the threshold of 𝑑𝑛′. Accordingly, 𝐹(𝑑𝑛) is formulated as follows; 

The possible cases regarding the optimal policy include different combinations of 𝑑𝑛′and 𝑑𝑛as: 

{

𝑑𝑛 = ∞,
𝑑𝑛 = 𝜃1,
𝑑𝑛 ′ = 0,

𝑑𝑛 ′ = 𝜃2

 

Equation (17) expresses the mean of Gamma distribution with 𝜆.  

 

𝑓(𝜆) ∈ 𝛤 (𝛼 = 𝑚, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

)  ⇒   
𝛼

𝛽
= 𝜆1   ⇒  𝛽 =

𝛼

𝜆1
 (11) 

𝑃(𝜆 ≥ 𝑑𝑛) = ∫ 𝑓(𝜆)
∞

𝑑𝑛

𝑑𝜆 ≤ 휀1  ⇒  1 − 𝐹(𝑑𝑛) ≤ 휀1  ⇒  𝑑𝑛 ≥ 𝐹
−1(1 − 휀1) (12) 

𝑑𝑛 ≥ 𝐹−1(1 − 휀1) = 𝜃1 (13) 

𝑓(𝜆) ∈ 𝛤 (𝛼 = 𝑚, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

)  ⇒   
𝛼

𝛽
= 𝜆2   ⇒  𝛽 =

𝛼

𝜆2
 (14) 

𝑃(𝜆 ≤ 𝑑𝑛 ′) = ∫ 𝑓(𝜆)
𝑑𝑛′

0

𝑑𝜆 ≤ 휀2   ⇒  𝐹(𝑑𝑛 ′) ≤ 휀2   ⇒  𝑑𝑛 ′ ≤ 𝐹
−1(휀2) (15) 

𝑑𝑛 ′ ≤ 𝐹
−1(휀2) = 𝜃2 (16) 

𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

 (17) 
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The optimal policy can be determined through Equation (18) because the best values of 𝑑𝑛and 𝑑𝑛′ meet 

the thresholds of optimal decision-making. In the following, decision rules are provided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To solve the investigated model, we propose an algorithm in the next section. 

 

5. The solution algorithm 

To solve the considered problem, the following algorithm is proposed. 

a) 
In the first stage (n=1), we define 𝐻𝑛(𝜆) using Equation (10) and considering 𝛽 = ∑ 𝑡𝑖, 𝛼 = 𝑚, 𝑓, 𝑅 , 

𝑇, 𝐶, 𝛿1, 𝛿2,  𝜆1, 𝜆2, 휀1, 휀2, 𝐻, 𝐷 and 𝛾
 
.
 

b) Using equations (13) and (16) and numerical integrations, the thresholds of 𝑑1 and 𝑑1
′ are determined as 

𝜃1 and 𝜃2. 

c) The best value of 𝐻𝑛(𝜆) is determined regarding four cases (𝑑1 = 0, 𝑑1
′ = ∞),(𝑑1 = 0, 𝑑1

′ = 𝜃2), 

(𝑑1 = 𝜃1, 𝑑1
′ = ∞), and (𝑑1 = 𝜃1, 𝑑1

′ = 𝜃2). 

d) We decide according to the value of 𝐸(𝜆) (Equation (17)) and the thresholds. 

e) Set 𝑛 = 𝑛 + 1 and determine the optimal value of 𝐻𝑛−1(𝜆). Then, go to Step (a). 

To evaluate the optimal value of 𝐻𝑛−1(𝜆) in Step (e), we need to calculate the optimal values of 

𝐻𝑛−2(𝜆), 𝐻𝑛−3(𝜆), . . . , and 𝐻1(𝜆).  

1) 
𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛
≤ 0 ,  

𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛 ′
≤ 0 ⇒ {

𝑑𝑛 = ∞,
𝑑𝑛 ′ = 𝜃2

⇒

{
 

 1.1) 𝑖𝑓 
𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

≤ 𝜃2 ⇒ (
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

)

1.2) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⇒ (
𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑
 𝑔𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑔𝑒

)

 

2) 
𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛
≤ 0 ,  

𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛 ′
≥ 0 ⇒ {

𝑑𝑛 = ∞,
𝑑𝑛 ′ = 0

⇒ (
𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑
 𝑔𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑔𝑒

) 

3) 
𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛
≥ 0 ,  

𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛 ′
≤ 0 ⇒ {

𝑑𝑛 = 𝜃1,
𝑑𝑛 ′ = 𝜃2

⇒

{
 
 
 
 

 
 
 
 3.1) 𝑖𝑓 𝜃1 ≤

𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

≤ 𝜃2 ⇒ (
𝑆𝑖𝑛𝑐𝑒 𝑑𝑛 ≥ 𝑑𝑛 ′ 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒 
𝑖𝑠 𝑛𝑜𝑡 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑠ℎ𝑜𝑢𝑙𝑑 
𝑛𝑜𝑡 𝑏𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

)

3.2) 𝑖𝑓 𝜃2 ≤
𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

≤ 𝜃1 ⇒ (
𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑
 𝑔𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑔𝑒

)

3.3) 𝑖𝑓 𝜃1, 𝜃2 ≤
𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

⇒ (𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)

3.4) 𝑖𝑓 
𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

≤ 𝜃1, 𝜃2 ⇒ (
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑦 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

)

 

4) 
𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛
≥ 0 ,  

𝜕𝐻𝑛(𝜆)

𝜕𝑑𝑛 ′
≥ 0 ⇒ {

𝑑𝑛 = 𝜃1,
𝑑𝑛 ′ = 0

⇒ {

4.1) 𝑖𝑓 𝜃1 ≤
𝑚

∑ 𝑡𝑖
𝑚
𝑖=1

⇒ (𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡)

4.2) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⇒ (
𝑅𝑒𝑝𝑎𝑖𝑟 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑
 𝑔𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑔𝑒

)

 

(18) 
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In the following section, a numerical example is carried out to evaluate the effectiveness of the proposed 

model. 

 

6. The numerical example 

In this example, two decision-making stages are investigated. We assume that the number of defective 

products is 𝛼 = 𝑚 = 2, and the summation time between the productions of two defective products in 

a row is 𝛽 = ∑ 𝑡𝑖
𝑚
𝑖=1 = 12. The data of other parameters are:𝑅 = 100 ($), 𝑇 = 50 ($), 𝐶 = 1 ($), 

𝛿1 = 0.04, 𝛿2 = 0.1. 𝜆1 = 0.16, 𝜆2 = 0.4, 휀1 = 0.05, 휀2 = 0.1, 𝐻 = 1000,  𝐷 = 4000, 𝛾 = 0.8. 

Moreover, the values of �̄�, 𝜑, 𝜙 are 1000, 0.5 and 1.1, respectively. 

Considering Equation (1), it is obtained that 𝑓(𝜆) ≈ 𝐺𝑎𝑚𝑚𝑎(𝛼 = 𝑚 = 2, 𝛽 = ∑ 𝑡𝑖 = 12), and 

considering the first step of the algorithm(𝑛 = 1), Equation (10) is formulated as: 

 

The terms in Equation (19) are obtained as follows; 

We use 𝜆0 ∈ 𝐸𝑥𝑝(𝜆), 𝑉0(𝜆) = 100𝜇𝜆, and 𝑊0(𝜆) =
1

1+𝑒𝑥𝑝(𝜇𝜆)
 to obtain the values of parameters 

mentioned above. Therefore, we have: 

 

 

 

In the second step, using equations (13) and (16), we have: 

 

which are evaluated by Excel 2019 for 𝜃1 = 60 and 𝜃2 = 3. 

𝐻1(𝜆)

=

(
(𝑅 + 𝛾. 𝑉0(𝜆0)). 𝑃(𝜆 ≥ 𝑑1) + (𝐶.𝐻. 𝜇𝜆 + 𝛾. 𝑉0(𝜙. 𝜆)). 𝑃(𝜆 ≤ 𝑑1′) +

[1 − 𝑃(𝜆 ≥ 𝑑1) − 𝑃(𝜆 ≤ 𝑑1′)]. (𝛾. 𝑉0(𝜑. 𝜆) + 𝑇)
)

(
𝑃(𝜆 ≥ 𝑑1). (∫ 𝑓(𝜆)

∞

𝜆2
𝑑𝜆 + 𝛾.𝑊0(𝜆0)) + 𝑃(𝜆 ≤ 𝑑1′). (∫ 𝑓(𝜆)

𝜆1
0

𝑑𝜆 + 𝛾.𝑊0(𝜙𝜆)) +

[1 − 𝑃(𝜆 ≥ 𝑑1) − 𝑃(𝜆 ≤ 𝑑1′)]. (𝛾.𝑊0(𝜑𝜆) + ∫ 𝑓(𝜆)𝑑𝜆
𝜆2
𝜆1

)
)

 (19) 

𝑉0(𝜆0) = 0.1    𝜇𝜆 =
𝛼

𝛽
= 0.1667 𝑉0(𝜙. 𝜆) = 18.3333 

𝑉0(𝜑. 𝜆) = 8.3333 ∫ 𝑓(𝜆)
∞

𝜆2

𝑑𝜆 = 0.9994 ∫ 𝑓(𝜆)
𝜆1

0

𝑑𝜆 = 8.8103𝐸 − 05 

𝑊0(𝜙𝜆) = 0.4542 𝑊0(𝜑𝜆) = 0.4791   𝑊0(𝜆0) = 0.4997 ∫ 𝑓(𝜆)𝑑𝜆
𝜆2

𝜆1

= 0.00045526 

𝐻1(𝜆)

=

(
(100 + 0.8 ∗ 0.1). 𝑃(𝜆 ≥ 𝑑1) + (1 ∗ 1000 ∗ 0.1667 + 0.8 ∗ 18.3333). 𝑃(𝜆 ≤ 𝑑1′) +
[1 − 𝑃(𝜆 ≥ 𝑑1) − 𝑃(𝜆 ≤ 𝑑1′)]. (0.8 ∗ 8.3333 + 50)

)

(
(0.9994 + 0.8 ∗ 0.4997). 𝑃(𝜆 ≥ 𝑑1) + (8.81103𝐸 − 5 + 0.8 ∗ 0.4542). 𝑃(𝜆 ≤ 𝑑1′) +
[1 − 𝑃(𝜆 ≥ 𝑑1) − 𝑃(𝜆 ≤ 𝑑1′)]. (0.8 ∗ 0.4791 + 0.000445526)

)

 

𝑓(𝜆) ∈ 𝛤 (𝛼 = 𝑚 = 2, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

= 12) ⇒
𝛼

𝛽
= 𝜆1 ⇒ 𝛽 =

𝛼

𝜆1
          𝑑𝑛′ ≥ 𝐹

−1(1 − 휀1) = 𝜃1 

𝑓(𝜆) ∈ 𝛤 (𝛼 = 𝑚 = 2, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

= 12) ⇒
𝛼

𝛽
= 𝜆2 ⇒ 𝛽 =

𝛼

𝜆2
                𝑑𝑛′ ≤ 𝐹

−1(휀2) = 𝜃2 
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In in Step 3, the objective function is evaluated under different thresholds of 𝑑1, 𝑑1′, and then the best 

values of 𝑑1 and 𝑑1′, which minimize the objective function, are selected as follows; 

𝑑1 = ∞

𝑑1′ = 0
} → 𝐻1(0.1667) = 147.647

  

𝑑1 = ∞

𝑑1′ = 3
} → 𝐻1(0.1667) = 156.4736

 𝑑1 = 60

𝑑1′ = 0
} → 𝐻1(0.1667) = 137.5112

  

𝑑1 = 60
𝑑1′ = 3

} → 𝐻1(0.1667) = 145.471 

Hence, the minimum value of 𝐻1 is obtained as 137.5112 and the best values of 𝑑1 and 𝑑1′ are 60 and 0, 

respectively. 

In the fourth step, based on the obtained values of the expected mean of time between productions of 

defective products (i.e.,0.1667) and 𝑑1 = 60 ≥
𝑚

∑𝑡𝑖
= 0.1667 ≥ 𝑑1′ = 0, we should repair the machine 

and then go to the next stage. 

In Stage 2 (𝑛 = 2), we assume 𝛼 = 𝑚 = 5 and 𝛽 = ∑𝑡𝑖 = 110. According to Equation (1), it is obtained 

that 𝑓(𝜆) ≈ 𝐺𝑎𝑚𝑚𝑎(𝛼 = 𝑚 = 5, 𝛽 = ∑ 𝑡𝑖 = 110), and Equation (10) is formulated as follows. 

𝐻2(𝜆) =

(
(𝑅 + 𝛾. 𝑉1(𝜆0)). 𝑃(𝜆 ≥ 𝑑2) + (𝐶.𝐻. 𝜇𝜆 + 𝛾. 𝑉1(𝜙. 𝜆)). 𝑃(𝜆 ≤ 𝑑2′) +

[1 − 𝑃(𝜆 ≥ 𝑑2) − 𝑃(𝜆 ≤ 𝑑2′)]. (𝛾. 𝑉1(𝜑. 𝜆) + 𝑇)
)

(
𝑃(𝜆 ≥ 𝑑2). (∫ 𝑓(𝜆)

∞

𝜆2
𝑑𝜆 + 𝛾.𝑊1(𝜆0)) + 𝑃(𝜆 ≤ 𝑑2′). (∫ 𝑓(𝜆)

𝜆1
0

𝑑𝜆 + 𝛾.𝑊1(𝜙𝜆)) +

[1 − 𝑃(𝜆 ≥ 𝑑2) − 𝑃(𝜆 ≤ 𝑑2′)]. (𝛾.𝑊1(𝜑𝜆) + ∫ 𝑓(𝜆)𝑑𝜆
𝜆2
𝜆1

)
)

 

In the second step, considering equations (13) and (16), we have: 

𝑓(𝜆) ∈ 𝛤 (𝛼 = 𝑚 = 5, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

= 110) ⇒
𝛼

𝛽
= 𝜆1 ⇒ 𝛽 =

𝛼

𝜆1
            𝑑𝑛 ′ ≥ 𝐹

−1(1 − 휀1) = 𝜃1 

𝑓(𝜆) ∈ 𝛤 (𝛼 = 𝑚 = 5, 𝛽 =∑𝑡𝑖

𝑚

𝑖=1

= 110) ⇒
𝛼

𝛽
= 𝜆2 ⇒ 𝛽 =

𝛼

𝜆2
                𝑑𝑛 ′ ≤ 𝐹−1(휀2) = 𝜃2 

which are evaluated by Excel 2019 for 𝜃1 = 287 and 𝜃2 = 31. 

Then in Step 3, the objective function is evaluated under different possible thresholds of 𝑑1, 𝑑1′, and then 

the best values of 𝑑1 and 𝑑1′, which minimize the objective function, are chosen as: 

𝑑2 = ∞

𝑑2′ = 0
} → 𝐻2(0.045455) = 285.1428

  

𝑑2 = ∞

𝑑2′ = 31
} → 𝐻2(0.045455) = 281.1427272

 𝑑2 = 278

𝑑2′ = 0
} → 𝐻2(0.045455) = 121.99234

 

𝑑2 = 278

𝑑2′ = 31
} → 𝐻2(0.045455) = 111.9923086 

Hence, the minimum value of 𝐻2 is 111.9923086 and the optimal values of 𝑑1 and 𝑑1′ are 278 and 31, 

respectively.  

In Step 4, based on the value of the mean of time between productions of defective products (i.e., 

0.045455), and 𝑑1 = 278, 𝑑1′ = 31 ≥
𝑚

∑𝑡𝑖
= 0.045455, we should continue the production process. It is 

noteworthy that carrying out the maintenance work is not necessary. 
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7. Conclusions 

In this research, we proposed the finite horizon single-item maintenance optimization structured for 

preventive maintenance and quality control. One Bayesian model was developed to model the 

distribution of time between the productions of two defective goods in a row. We also formulated the 

system as a dynamic programming model, and derived some properties of the best function, which 

enabled us to efficiently search the optimal maintenance policy, minimize the expected total discounted 

system cost, and maximize the total discounted probability of correct decisions simultaneously. This 

study can be extended in several paths. First, this research can be developed in an uncertain environment. 

Second, for future research, it will be interesting to consider the other probability distributions, such as 

Bath tub curve probability distribution function, and compare the effects of different probability 

distribution functions. 
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