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Abstract 

   

1 | Introduction  

Investment in financial markets can achieve two goals: (i) maximizing the anticipated utility of return 

and (ii) limiting risk exposure of return. An investment portfolio is one of the methods for achieving 

these objectives. Markowitz (1952) introduced a mean-variance model for portfolio selection, which 

has two primary goals: maximize anticipated return and reduce expected risk. This model is the 

foundation for the current portfolio theory. In practical situations, portfolio strategies are often multi-

period, allowing investors to reassess their investment strategy. However, several expansions have 

been offered in a single-period horizon (Peykani et al., 2022). Mulvey and Vladimirou (1989) examined 

a multi-period stochastic programming model for the portfolio selection problem. Mulvey and 

Ziemba (1995) and Ziemba (1998) concentrated their study on the issue of scenario tree consumption 

and investment. Mulvey et al. (1997) introduced a nonlinear model that extracts asset/liability 

management for efficiently controlling risk over long periods in recent research. Dupacova (1999) 

proposed approaches for analyzing results obtained by solving stochastic algorithms based on 

asymptotic and robust statistics, the moment problem, and parametric optimization findings. Mulvey 
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and Shetty (2004) presented a framework for modeling financial planning problems using multi-stage 

optimization and interior-point approaches with the scenario to deal with uncertainty. 

Pinar (2007) developed multi-stage portfolio selection models with a linear composite objective and a 

simulated market model to deal with market unpredictability. Gulpinar and Rustem (2007) introduced a 

multi-period mean-variance optimization framework for the worst-case design of the scenario tree's 

stochastic characteristics. Edirisinghe and Patterson (2007) investigated a stochastic multi-stage 

programming model using block separable recourse structure in layered L-shaped decomposition. Sakar 

and Koksalan (2013) studied a stochastic programming technique for solving the multi-criteria multi-

period portfolio optimization issue. They used a single index model (SIM) to estimate stock returns from 

a market-representative index and a random walk model to construct scenarios for the index return 

potential values. Najafi and Mushakhian (2015) investigated a multi-stage stochastic mean-semivariance-

CVaR model considering scenario trees to tackle uncertainty. Additionally, they created a hybrid 

metaheuristic that uses both a genetic algorithm (GA) and a particle swarm optimization method (PSO) 

to find a solution. Chen et al. (2016) explored a deterministic convex programming model for a multi-

period portfolio selection problem with terminal distortion risk measure using the scenario tree 

approach. To handle uncertainty, Mohebbi and Najafi (2018) developed a bi-objective mean-VaR 

portfolio selection model by fusing the fuzzy credibility theory with scenario trees. Nouri and 

Mohammadi (2018) suggested a randomized method for transforming uncertainty into a state of 

certainty and combined it with agreeing to prepare for a particular goal. To deal with market uncertainty, 

Liu and Chen (2018) suggested two multi-period robust risk metrics using a regime-switching framework 

and scenario trees. Nasaz et al. (2020) investigated a multi-period optimization problem using a meta-

heuristic method (i.e., Non-dominated Sorting Genetic Algorithm II (NSGA II)). To demonstrate the 

effectiveness of the suggested technique, they also employed several quantitative performance metrics. 

Prior studies have indicated that stochastic programming models are flexible tools to describe financial 

optimization problems under uncertainty. In the literature, various formulations have been used for the 

multi-stage financial problem (Kall, Wallace, and Kall, 1994). Using multi-stage stochastic programming, 

Carino et al. (1994) investigated an asset/liability management issue. For the best distribution of assets, 

a hybrid simulation/tree multi-period stochastic programming model has been developed in the study 

of Hibiki (2006). In multi-period stochastic programming models, random parameters are often 

modeled using scenarios. Based on a tree structure, scenarios are built (Mulvey and Ziemba, 1995). The 

conditional character of the scenario tree is taken into account, which is based on the extension of the 

decision space. At each node, conditional judgments are made within the restrictions of the modeling. 

The number of choice factors and conditions in the scenario tree may increase exponentially to 

guarantee that the generated representative set of scenarios adequately covers the set of possibilities. 

To sum up, scholars have employed variance as a risk indicator. Due to asymmetric return distributions, 

the demand of investors, and the measurement of actual investment risk, semi-deviation-based metrics 

of downside risk should be substituted by variance. Risk management options use semi-deviation to 

describe the loss over a particular period with a given level of confidence (Ji and Lejeune, 2018). 

Although several studies have investigated the multi-stage stochastic portfolio selection issue, most of 

them have employed one objective function. Specifically, they have primarily considered the mean or 

risk of the portfolio as the objective function, and they have ignored considering stock liquidity as the 

objective function. Additionally, the majority of these studies were nonlinear, and they have not 

determined a global solution. Thus, investors cannot trust the chosen portfolio. 

In this paper, our proposed model includes three objectives. The first objective is considered wealth, 

the second objective is considered semi-deviation (as a downside risk measure), and the third objective 

is the liquidity of the portfolio. Also, the transaction cost is taken into account. Our proposed linear 

model has the global solution. Our study adds a new perspective on multi-stage stochastic problems. 

Moreover, a goal programming (GP) technique is employed to obtain the optimal strategy. Specifically, 
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a scenario tree approach and a GP method are used to transform the proposed stochastic multi-objective 

model into a crisp single-objective problem.  

The remainder of this paper is structured as follows. In Section 2, a multi-period portfolio optimization 

model is developed considering transaction costs and limitations. Section 3 explains a goal programming 

approach to solve the suggested model. Section 4 provides a numerical example, and discusses findings 

and managerial insights. Section 5 concludes the paper and provides future research paths.  

 

2. The multi-stage portfolio optimization model 

2.1. Problem statement 

In this study, a multi-stage portfolio optimization model is considered under a stochastic environment via 

I risky assets. A planning horizon consists of T stages. A transaction takes place at discrete time points. 

Time intervals can vary from minutes to years, and decisions are made at the beginning of the stages. The 

current date is deemed as the first stage. Revenue from the sales is added to the budget, and expenses from 

the purchases are detracted from the budget. At time t+1, based on the realized returns over (t, t+1] the 

investor’s holdings are updated. At the end of period T, an investor collects his final wealth 𝑊𝑇. The 

investor’s goal is to manage a portfolio of assets to maximize the expected utility of final wealth 𝐸[𝑈(𝑊𝑇)]. 
Uncertainty is modeled through scenarios, and each scenario describes a possible realization of all uncertain 

parameters in the model. Each scenario S at period t has a probability 𝑝𝑡
𝑠, where 𝑝𝑡

𝑠 > 0 and ∑ 𝑝𝑡
𝑠𝑆

𝑠=1 = 1. 

In a dynamic model, a suitable way to represent uncertainty is a scenario tree because it creates information 

visible on the real value of the uncertain parameters under stages. A scenario is a route from the root to a 

leaf. Any node of the tree, corresponding to time t, stands for a possible state of the world, and it is crystal 

clear that all scenarios, passing these nodes, have the same history in periods 0,1,2, . . . , 𝑇 − 1. 

2.2. Sets, parameters, and decision variables  

Sets 

 

 

 

 

Parameters 

𝑟𝑖𝑡
𝜑

 return rate of risky asset 𝑖 at period 𝑡 and node 𝜑; 

𝑟𝑝𝑡
𝜑

 return rate of portfolio at period 𝑡 and node 𝜑; 

𝑢𝑏𝑖𝑡
𝜑

 upper bound of𝑥𝑖𝑡
𝜑

; 

𝑙𝑏𝑖𝑡
𝜑

 lower bound of𝑥𝑖𝑡
𝜑

; 

𝑙𝑖𝑡
𝜑

 the liquidity of risky asset 𝑖 at period 𝑡 and node 𝜑; 

𝑆𝑡 the number of scenarios at period 𝑡 that branch from each node; 

𝑝𝑡
𝑠 the occurrence probability of scenario 𝑠 at period 𝑡; (∑ 𝑝𝑡

𝑠𝑆𝑡
𝑠=1 = 1 ) 

𝑐𝑖𝑡
𝜑

 unit transaction cost of risky asset 𝑖 at period t and node 𝜑; 

 

𝑖  risky asset 𝑖 = 1,2,3, … , 𝐼; 

𝑡  investment period 𝑡 = 1,2,3, … , 𝑇; 

𝑠  scenario 𝑠 = 1,2,3, … , 𝑠𝑡 ; 

𝜑  node number in each scenario; 

𝜑′  later node of node 𝜑; 

𝜙𝑡  the number of nodes at the beginning of period 𝑡; 
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Variables 

 

 

 

2.3. Mathematical definition of the model  

The suggested model in this work has three goals: the first goal is wealth, the second goal is to evaluate 

downside risk using semi-deviation, and the third goal is to quantify portfolio liquidity. The suggested 

linear model offers a comprehensive solution. Additionally, the transaction cost is considered, leading 

to the proposal of a novel viewpoint on multi-stage stochastic situations. The goal programming (GP) 

approach is then used to find the best action. The suggested stochastic multi-objective model is reduced 

to a clear single-objective issue using GP and a scenario tree technique.  

2.3.1. Objective functions 

• Maximizing Terminal Wealth 

In the multi-period portfolio optimization problem, the wealth without cost transaction at period t for 

node𝜑 can be calculated by 𝑊𝑡
𝜑

= ∑ 𝑟𝑖𝑡
𝜑

𝑥𝑖𝑡
𝜑𝐼

𝑖=1 . In 1982, Patel and Subrahmanyam (1982) proved that 

ignoring the transaction cost during portfolio trading often leads to an inefficient portfolio. The 

transaction cost is defined as a V-shape function of differences between 𝑡th and 𝑡 − 1th period portfolio 

(Markowitz and Todd, 2000), the transaction cost of the risky asset at period 𝑡 for node 𝜑 is 

𝑐𝑖𝑡
𝜑

|𝑥𝑖𝑡
𝜑

− 𝑥𝑖𝑡−1
𝜑′

| with 𝜑𝜖𝜙𝑡 and �́�𝜖𝜙𝑡−1. The total transaction cost of portfolio at period t under the 

scenario is expressed as 𝐶𝑡
𝜑

= ∑ 𝑐𝑖𝑡
𝜑

|𝑥𝑖𝑡
𝜑

− 𝑥𝑖𝑡−1
𝜑′

|𝐼
𝑖=1 . 

Hence, the net wealth of the portfolio at period t and node 𝜑 can be denoted as  

 

 

The terminal wealth as the objective is expressed: 

 

• Minimizing Risk 

The risk of a portfolio may be measured using different approaches. Measures of downside risk disregard 

any upward departures from anticipated return (as they are to the investor's advantage) and are solely 

concerned with a portfolio's losses. In the literature, there are several metrics of downside risk, including 

mean absolute semi-deviation (MASD), value-at-risk (VaR), and conditional value-at-risk (CVaR) 

(Mehlawat et al., 2021). 

The expected value of the negative deviations from the anticipated return on an asset is the mean 
absolute semi-deviation. Since most investors view risk as the potential for an asset to perform below 
its intended rate of return, MASD fits with this understanding of risk. As suggested by Markowitz (1959), 
variance is not used but instead minimizes the MASD of the portfolio, which penalizes the downside 

𝐿𝑖𝑞𝑡
𝜑

 liquidity of portfolio at period t and node 𝜑; 

𝑆𝐷𝑡 semi deviation as risk at period t; 

𝑥𝑖𝑡
𝜑

 invest of risky asset 𝑖 at period 𝑡 for node 𝜑, as a decision variable; 

𝑋𝑡
𝜑

 portfolio at period 𝑡 for node 𝜑, i.e.,𝑋𝑡
𝜑

= (𝑥1𝑡
𝜑

, 𝑥2𝑡
𝜑

, … 𝑥𝐼𝑡
𝜑

) ; 

𝑊𝑡
𝜑

 available net wealth of Scenario s at the beginning of period 𝑡; 

𝑊𝑡
𝜑

= ∑ 𝑟𝑖𝑡
𝜑

𝐼

𝑖=1

𝑥𝑖𝑡
𝜑

− ∑ 𝑐𝑖𝑡
𝜑

|𝑥𝑖𝑡
𝜑

− 𝑥𝑖𝑡−1
𝜑′

|

𝐼

𝑖=1

 𝜑𝜖𝜙𝑡, 𝜑′𝜖𝜙𝑡−1 and 𝑡 ∈ 𝑇 (1) 

𝐸(𝑊𝑇
𝜑

) = 𝐸(∑ 𝑟𝑖𝑡
𝜑

𝐼

𝑖=1

𝑥𝑖𝑇
𝜑

− ∑ 𝑐𝑖𝑇
𝜑

|𝑥𝑖𝑇
𝜑

− 𝑥𝑖𝑇−1
𝜑′

|

𝐼

𝑖=1

) 𝜑𝜖𝜙𝑇 , 𝜑′𝜖𝜙𝑇−1 (2) 
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risk by 𝐸 [[∑ ∑ (𝜇𝑗 − 𝑅𝑗)𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼 ]

+
] that i and j show scenarios and assets, respectively. Also,𝜇𝑗and 

𝑅𝑗show expected return and asset return, respectively (Ji & Lejeune, 2018). Now, the relation is customized 

for period t: 

That 𝜇𝑡
𝜑

= ∑ 𝐸(𝑟𝑖𝑡
𝜑

)𝐼
𝑖=1  for 𝜑𝜖𝜙𝑡and 𝑡 ∈ 𝑇. 

To consider various scenarios in the multi-period portfolio optimization problem, the semi-deviation 
function can be utilized to minimize the risk of the investigated portfolio as follows: 

 

• Liquidity 

In decision-making on portfolio investment, one of the key elements that should be considered is liquidity 
for investors. It measures the degree of probability that investors will convert an asset into income. 
Investors prefer assets with higher liquidity because their returns tend to rise over time. Generally, liquidity 
is measured by the turnover rate of assets. According to Fong et al. (2017), the closing percent quoted 
spread from Chung and Zhang (2014) is the best spread proxy for capturing changes in effective and 
quoted spreads. The closing percent quoted spread (Spread) of stock i on day t is defined as 

where 𝐴𝑠𝑘𝑖𝑡is the closing ask price of risky asset i at period t, 𝐵𝑖𝑑𝑖𝑡 is the closing bid price of i at period 

t, and 𝑀𝑖𝑡is the mean of 𝐴𝑠𝑘𝑖𝑡and 𝐵𝑖𝑑𝑖𝑡 (Ma, Anderson, & Marshall, 2018). Now for using the spread in 

this modeling, it should be extended to cover nodes in the scenario tree. Therefore, 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡is changed 

to 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡
𝜑

, and its relation is changed to the following equation:  

 

The portfolio liquidity for each node is expressed as: 

For calculating overall liquidity as the objective, the following relation is defined: 

 

2.3.2. Constraints 

• Budget  

At the beginning of the first period, the budget constraint is:   

 

 

• Cash Flows  

𝑆𝐷𝑡 = 𝐸 [[ ∑ ∑(𝜇𝑡
𝜑

− 𝑟𝑖𝑡
𝜑

)𝑥𝑖𝑡
𝜑

𝑖∈𝐼𝜑∈𝜙𝑡

]

+

] 𝑡 ∈ 𝑇 (3) 

∑ 𝑆𝐷𝑡

𝑡∈𝑇

= ∑ 𝐸 [[∑ ∑(𝜇𝑡
𝜑

− 𝑟𝑖𝑡
𝜑

)𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

𝜙𝑡

𝜑=1

]

+

]

𝑡∈𝑇

  (4) 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡 =
𝐴𝑠𝑘𝑖𝑡 − 𝐵𝑖𝑑𝑖𝑡

𝑀𝑖𝑡
  (5) 

𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑡
𝜑

=
𝐴𝑠𝑘𝑖𝑡

𝜑
− 𝐵𝑖𝑑𝑖𝑡

𝜑

𝑀𝑖𝑡
𝜑   (6) 

𝐿𝑖𝑞𝑡
𝜑

= 𝐸(∑ 𝑙𝑖𝑡
𝜑

𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

) 𝜑𝜖𝜙𝑡, 𝑡 ∈ 𝑇 (7) 

𝑀𝑎𝑥 ∑ ∑ 𝐿𝑖𝑞𝑡
𝜑

𝜙𝑡

𝜑=1

𝑇

𝑡=1

= 𝑀𝑎𝑥 ∑ ∑ 𝐸(∑ 𝑙𝑖𝑡
𝜑

𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

𝜙𝑡

𝜑=1

𝑇

𝑡=1

)  (8) 

∑ 𝑥𝑖1
𝜑

 

𝐼

𝑖=1

+ ∑ 𝑐𝑖1
𝜑

𝑥𝑖1
𝜑

𝐼

𝑖=1

= 𝑊 𝜑𝜖𝜙1 (9) 
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Cash flow Constraints are between periods, which is as relationships between each node, and later nodes 

are determined by 

• Minimum Return  

The minimum return at each node, which the portfolio return must achieve, is expressed as 

 

• Threshold 

The minimum and maximum amount of investment in the i-th asset at period t and node   can be 

determined as 

 

• No short selling 

No short selling of assets at each period t is expressed as 

 

• The proposed model 

Over the entire investment horizon, the investor intends to obtain the most significant final wealth and 

minimizes the risk simultaneously. Thus, the multi-period portfolio optimization model is as follows: 

∑ 𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

 = ∑ 𝐸(𝑟𝑖𝑡
𝜑

)

𝐼

𝑖=1

𝑥𝑖𝑡
𝜑′

− ∑ 𝑐𝑖𝑡
𝜑

|𝑥𝑖𝑡
𝜑

− 𝑥𝑖𝑡−1
𝜑′

|

𝐼

𝑖=1

 𝜑𝜖𝜙𝑡, 𝜑′𝜖𝜙𝑡−1and 𝑡 ∈ 𝑇 (10) 

∑ 𝑟𝑖𝑡
𝜑

𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

≥ 𝜇 𝑡 ∈ 𝑇 (11) 

𝑙𝑏𝑖𝑡
𝜑

≤ 𝑥𝑖𝑡
𝜑

≤ 𝑢𝑏𝑖𝑡
𝜑

 𝑖 ∈ 𝐼, 𝜑𝜖𝜙𝑡 , 𝑡 ∈ 𝑇 (12) 

𝑥𝑖𝑡
𝜑

≥ 0 𝑖 ∈ 𝐼, 𝜑𝜖𝜙𝑡 , 𝑡 ∈ 𝑇 (13) 

𝑀𝑎𝑥 𝐸(∑ 𝑟𝑖𝑇
𝜑

𝐼

𝑖=1

𝑥𝑖𝑇
𝜑

− ∑ 𝑐𝑖𝑇
𝜑

|𝑥𝑖𝑇
𝜑

− 𝑥𝑖𝑇−1
𝜑′

|

𝐼

𝑖=1

) 
 

 

𝑀𝑖𝑛 ∑ 𝐸 [[∑ ∑(𝜇𝑡
𝜑

− 𝑟𝑖𝑡
𝜑

)𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

𝜙𝑡

𝜑=1

]

+

]

𝑇

𝑡=1

 

 
(14) 

𝑀𝑎𝑥 ∑ ∑ 𝐸(∑ 𝑙𝑖𝑡
𝜑

𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

𝜙𝑡

𝜑=1

𝑇

𝑡=1

) 
  

s.t.   

∑ 𝑥𝑖1
𝜑

𝐼

𝑖=1

 + ∑ 𝑐𝑖1
𝜑

𝑥𝑖1
𝜑

𝐼

𝑖=1

= 𝑊 𝜑𝜖𝜙1 
 

∑ 𝑥𝑖𝑡
𝜑

 

𝐼

𝑖=1

= ∑ 𝐸(𝑟𝑖𝑡
𝜑

)

𝐼

𝑖=1

𝑥𝑖𝑡
𝜑′

− ∑ 𝑐𝑖𝑡
𝜑

|𝑥𝑖𝑡
𝜑

− 𝑥𝑖𝑡−1
𝜑′

|

𝐼

𝑖=1

 𝜑𝜖𝜙𝑡, 𝜑′𝜖𝜙𝑡−1and 𝑡 ∈ 𝑇 
 

∑ 𝑟𝑖𝑡
𝜑

𝑥𝑖𝑡
𝜑

𝐼

𝑖=1

≥ 𝜇 𝑡 ∈ 𝑇 
 

𝑙𝑏𝑖𝑡
𝜑

≤ 𝑥𝑖𝑡
𝜑

≤ 𝑢𝑏𝑖𝑡
𝜑

 𝜑𝜖𝜙𝑡, 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼  

𝑥𝑖𝑡
𝜑

≥ 0 𝑖 ∈ 𝐼, 𝜑𝜖𝜙𝑡, 𝑡 ∈ 𝑇  
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3. The goal programming technique 

For multiple-objective decision-making (MODM) issues where specific objectives are incompatible and 

non-commensurable, there are some strategies and algorithms available. One of the most valued, powerful, 

and practical techniques for solving MODM issues in goal programming (GP). Regarding the underlying 

distance metric, lexicographic, weighted, and Chebyshev goal programming are the three main variations 

of GP. Additionally, GP may be divided into fuzzy, integer, binary, and fractional goal programming 

depending on the mathematical structure of the decision variables and, or objectives (Charnes & Cooper, 

1977). 

Numerous GP versions developed to deal with the uncertainty surrounding securities for portfolio 

selection, are typically based on fuzzy theories and probability. Additionally, several scholars indicated that 

GP is a helpful method for solving multiple-objective problems. Peykani et al. (2021) introduced a unique 

fuzzy multi-period multi-objective portfolio optimization model using GP to handle two problems. First, 

it can be employed even in situations with ambiguous data and practical limitations. Second, in the fuzzy 

uncertainty setting, it was a multi-period portfolio management approach. Two intuitionistic fuzzy 

portfolio selection models for optimistic and pessimistic situations were described by Gupta et al. in 2019. 

For a portfolio selection issue, Yu et al. (2021) created a brand-new, unified intuitionistic fuzzy multi-

objective linear programming model. Therefore, GP is used as the most feasible strategy. 

In the following, the multiple objective linear programming (MOLP) problem is expressed in which c, a, 

and b, are the objective function coefficient, the technological coefficient, and the right-hand-side, 

respectively. 

Assume that a set of N goals {𝛹1, . . . , 𝛹𝑛, . . . , 𝛹𝑁} is specified by the decision maker (DM) for objective 

functions. Goal programming tries to achieve an optimal solution “as close as possible” to the set of 

specified goals that may not be simultaneously attainable. The equivalent weighted GP mathematical 

formulation to the above MOLP is written as follows: 

It should be elucidated that non-negative variables 𝜉𝑛
−and 𝜉𝑛

+are deviational variables of goal k. Also, 

𝛼𝑛
−and 𝛼𝑛

+ are weights assigned to the deviational variables of goal k are determined by the decision maker. 

The weighted GP mathematical formulation can be expanded to handle the objectives (goals) at different 

priority classes and levels.  

𝑀𝑎𝑥 ∑ 𝑐𝑗1𝑥𝑗

𝐽

𝑗=1

 

. 

. 

𝑀𝑎𝑥 ∑ 𝑐𝑗1𝑥𝑗

𝐽

𝑗=1

 

𝑆. 𝑡. ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝐽

𝑗=1

, ∀𝑖 

𝑥𝑗 ≥ 0,       ∀𝑗 

(15) 

𝑀𝑖𝑛 ∑(𝛼𝑛
−𝜉𝑛

−

𝑁

𝑛=1

, 𝛼𝑛
+𝜉𝑛

+) 

𝑆. 𝑡. 

∑ 𝑐𝑗𝑘𝑥𝑗 +

𝐽

𝑗=1

𝜉𝑛
− − 𝜉𝑛

+ = 𝛹𝑛 , ∀𝑛 

∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖,

𝐽

𝑗=1

∀𝑖 

𝑥𝑗, 𝜉𝑛
−, 𝜉𝑛

+ ≥ 0, ∀𝑗, 𝑛  

(16) 
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4. Implementation and results 

In this part, a real-world case study from the Tehran stock exchange is investigated. A multi-period 

multi-objective portfolio optimization model (TSE) is used to extract the data set of 20 stocks over three 

periods. Additionally, each node generates two possibilities once per period. The first node is produced 

at the start of the first period. Two possibilities are then made. There are four situations in period 2 

since two scenarios are created by each scenario from the previous period. Additionally, the third period 

has eight scenarios. There are a total of 15 nodes, numbered from 1 to 15. The nodes are shown in 

Figure 1. 

 
Figure 1. A scenario tree with 3 stages. 

Tables 1-2 show the data set for return, and Tables 3-4 show the data set for liquidity of 20 stocks for 

three periods under different scenarios. The parameters of the proposed model, including𝑙𝑏𝑖𝑡
𝜑

, 𝑢𝑏𝑖𝑡
𝜑

, 𝑐𝑖𝑡
𝜑

, 

𝜇, and W are set equal to 0, 3.0000E+7, 0.1%, 1.5%, and 1.0000E+8, respectively. Also, the ideal goal 

of three objectives, including terminal wealth, risk, and liquidity, is set equal to 1.5000E+8, 0, and 

1.0000E+8, respectively. Also, there are three weights assigned for deviational variables of goal k, and 

are determined by the decision maker and are the same. 
Table 1. Data set for the return. 

stock node 2 node 3 node 4 node 5 node 6 node 7 node 8 

01 0.00306 -0.02991 0.05847 0.09111 -0.13353 0.09457 0.15849 

02 -0.08950 0.11736 0.07342 -0.11550 0.01835 0.04508 -0.11683 

03 0.04082 0.04699 0.02386 -0.01969 0.02595 0.13615 0.02744 

04 -0.12161 -0.05215 -0.11614 -0.00019 -0.03198 -0.13483 0.04704 

05 0.05909 -0.02242 -0.0419 -0.16964 0.04657 -0.09378 0.13374 

06 0.01498 0.07342 -0.02649 0.00754 -0.05872 0.08982 0.00603 

07 0.04682 -0.12182 0.00619 -0.09047 0.01522 -0.0674 0.01438 

08 -0.00187 -0.05769 0.05028 0.06628 -0.04433 0.10793 -0.00926 

09 0.01334 0.11896 -0.14673 -0.10609 0.04298 0.05572 0.1465 

10 0.06337 -0.0468 -0.02823 -0.05451 -0.01649 -0.14111 -0.11377 

11 -0.05152 -0.13729 -0.05679 0.08499 0.01546 0.15781 -0.04892 

12 -0.04635 -0.08068 -0.03017 -0.13756 0.01823 0.01431 -0.01203 

13 -0.04445 -0.00591 0.12203 0.03697 0.04474 -0.10641 0.02864 

14 -0.05018 -0.04778 -0.06655 0.03230 0.16687 -0.03262 -0.16677 

15 -0.05944 0.09004 0.09816 -0.08714 0.07646 0.01540 0.04908 

16 0.04687 -0.04014 0.10220 0.04578 -0.11788 0.15455 -0.04359 

17 0.02099 0.01907 0.04576 0.00941 0.08696 0.09037 0.00047 

18 -0.11949 -0.08947 -0.12438 -0.07118 -0.13244 0.18532 -0.08422 

19 -0.16784 -0.05202 -0.05153 -0.00356 0.04542 0.01386 0.00641 
20 0.15673 -0.01054 -0.02513 0.03650 0.01402 -0.12435 -0.05537 
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Table 2. Data set for the return. 

stock node 9 node 10 node 11 node 12 node 13 node 14 node 15 

01 -0.04711 -0.11384 0.10229 -0.05104 0.17628 0.11257 -0.04928 

02 0.12718 -0.06329 -0.16137 -0.10303 -0.05822 0.03507 -0.02317 

03 0.11938 -0.15234 -0.13755 -0.07847 0.0845 0.03729 0.06561 

04 -0.12096 0.02555 -0.03724 0.05939 0.06459 -0.06936 -0.07786 

05 0.09405 0.02783 -0.09798 -0.08576 -0.09141 0.10521 -0.01527 

06 0.15651 0.09339 0.04491 0.13041 0.03973 0.03142 0.01044 

07 0.02959 -0.03831 0.09162 0.06743 0.00862 -0.13501 -0.13108 

08 -0.05608 -0.08498 -0.09715 -0.15106 -0.1174 0.0438 0.00529 

09 -0.02407 -0.12139 -0.08019 -0.08225 0.04386 -0.10119 0.09118 

10 0.01527 -0.06246 0.08364 0.07458 0.01145 0.02612 0.01235 

11 0.13949 -0.03827 -0.06809 0.07507 0.16039 -0.04081 -0.10804 

12 -0.12701 0.14469 0.07506 0.08674 0.03169 -0.16352 0.02684 

13 -0.03174 -0.0237 0.09457 -0.02298 0.02442 0.0332 0.0279 

14 0.06285 0.06484 -0.00955 -0.03201 0.11484 -0.00284 -0.02156 

15 -0.00973 0.07402 0.0734 -0.01253 0.09891 0.03187 0.10655 

16 -0.1078 -0.07023 0.00454 0.03847 -0.12382 0.14008 0.04978 

17 -0.00176 -0.10114 -0.05543 0.06928 0.05049 -0.02558 0.1462 

18 0.16892 0.05843 0.02963 -0.0044 0.1577 -0.08744 -0.04789 

19 0.08036 0.09015 -0.12872 0.15236 -0.05981 0.02746 0.03159 

20 -0.17557 0.08275 0.0675 0.05907 -0.13776 -0.07318 0.0648 

 

Table 3. Data set for liquidity. 

stock node 2 node 3 node 4 node 5 node 6 node 7 node 8 

01 0.06842 0.0525 0.02855 0.00805 0.02021 0.06172 0.01986 

02 0.04595 0.0036 0.04774 0.02351 0.0159 0.01872 0.03084 

03 0.09544 0.04411 0.03206 0.04246 0.00101 0.09877 0.09157 

04 0.05561 0.00291 0.00284 0.00972 0.07923 0.05267 0.05143 

05 0.00263 0.05748 0.08203 0.02578 0.07729 0.03694 0.06258 

06 0.00126 0.06797 0.01666 0.03892 0.01464 0.0109 0.06306 

07 0.03696 0.0704 0.06301 0.013 0.01321 0.07358 0.02697 

08 0.06606 0.02243 0.07133 0.04477 0.07628 0.08613 0.04376 

09 0.08392 0.0697 0.04599 0.02731 0.07816 0.08588 0.00218 

10 0.06326 0.05019 0.02313 0.02248 0.05295 0.06571 0.08308 

11 0.01312 0.06935 0.01072 0.0041 0.09274 0.04868 0.06616 

12 0.09539 0.00514 0.05528 0.06905 0.01737 0.09225 0.09035 

13 0.07638 0.0477 0.09292 0.06022 0.00128 0.01996 0.06487 

14 0.02627 0.00487 0.01023 0.03446 0.07004 0.0809 0.09614 

15 0.00258 0.00486 0.00093 0.01963 0.02847 0.03163 0.00645 

16 0.0623 0.06253 0.06045 0.09468 0.04734 0.09704 0.06188 

17 0.08472 0.08435 0.00575 0.02799 0.07336 0.07969 0.02672 

18 0.04829 0.05965 0.03052 0.07917 0.07082 0.06821 0.07700 

19 0.03952 0.09434 0.02895 0.04649 0.09938 0.00794 0.06952 

20 0.07007 0.09706 0.02490 0.06680 0.04688 0.00446 0.03449 
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Table 4. Data set for liquidity. 

stock scenario 2 scenario 3 scenario 4 scenario 5 scenario 6 scenario 7 scenario 8 

01 0.00747 0.00059 0.09304 0.02300 0.01133 0.09857 0.05190 

02 0.03484 0.01167 0.00477 0.04969 0.06179 0.08343 0.08904 

03 0.09295 0.04833 0.09156 0.00174 0.02233 0.00069 0.09827 

04 0.09769 0.08150 0.03714 0.05578 0.03701 0.07203 0.09779 

05 0.08792 0.07238 0.04178 0.09838 0.06842 0.07682 0.08297 

06 0.01583 0.09803 0.04995 0.02342 0.07503 0.05434 0.00477 

07 0.06125 0.00380 0.04497 0.09935 0.02086 0.06457 0.09428 

08 0.09997 0.07072 0.08116 0.08301 0.05001 0.08947 0.04364 

09 0.04251 0.03974 0.04183 0.04432 0.02419 0.07534 0.09780 

10 0.07671 0.08297 0.00348 0.08070 0.09370 0.05162 0.02949 

11 0.06205 0.02146 0.00297 0.02561 0.08571 0.06426 0.03637 

12 0.03151 0.04868 0.05538 0.02461 0.01195 0.05685 0.09623 

13 0.04993 0.06653 0.02774 0.02770 0.08666 0.00283 0.00981 

14 0.02161 0.02439 0.08380 0.09588 0.08639 0.06986 0.03599 

15 0.08954 0.09406 0.00655 0.05872 0.08743 0.09087 0.05024 

16 0.07742 0.04264 0.07977 0.03891 0.07791 0.02663 0.06918 

17 0.00557 0.06566 0.07418 0.06777 0.06759 0.03596 0.05129 

18 0.06124 0.06027 0.07711 0.01452 0.08441 0.02350 0.06718 

19 0.05784 0.07070 0.06008 0.09784 0.07247 0.09927 0.00416 

20 0.00180 0.07152 0.09876 0.03826 0.00188 0.01757 0.07779 

According to Tables 1-4 and relevant explanations, the proposed model is run by GAMS 24.7. The 

results show the selected stocks. In seven nodes, the portfolio is selected, from nodes 1 to 7. Figure 2 

indicates the visual distribution of the portfolio in each node. The stocks should be bought in maximum 

constraint (shown by dark green), and light green means partial investment in a stock. Stocks 1, 16, 17, 

19, and 20 are robust. These stocks were selected more than twice. Compared with these stocks, 16, 17, 

19 are more robust than 01 and 20, because of their fixed quantity. These stocks have the lowest 

transaction costs than others. In Table 6, the amount of each stock are indicated. Four stocks are selected 

in each node. Table 5 shows the optimal portfolio in each node. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of portfolio in each node. 

 

Table 5. Optimal portfolios for initial nodes at each period. 

 

 

 

 

 

node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1                                         

2                                         

3                                         

4                                         

5                                         

6                                   
 

    

7                                         

node optimal portfolio 

1 
1 16 17 20( 9.9001 6, 3.0000 7, 3.0000 7 3.0000 7)x E x E x E x E= + = + = + = +  

2 
3 8 13 17( 3.0000 7, 2.7947 7, 1.8575 7 3.0000 7)x E x E x E x E= + = + = + = +  

3 
1 16 17 20( 3.0000 7, 3.0000 7, 3.0000 7 8.6142 6)x E x E x E x E= + = + = + = +  

4 
4 9 17 19( 3.0000 7, 2.2123 7, 3.0000 7 3.0000 7)x E x E x E x E= + = + = + = +  

5 
6 7 13 19( 3.0000 7, 3.0000 7, 1.8575 7 3.0000 7)x E x E x E x E= + = + = + = +  

6 
16 17 19 20( 3.0000 7, 3.0000 7, 3.0000 7 3.7367 6)x E x E x E x E= + = + = + = +  

7 
1 16 17 20( 3.0000 7, 3.0000 7, 1.7694 7 3.0000 7)x E x E x E x E= + = + = + = +  
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Figure 3 shows the value of functions in each node through investment horizon, return, risk, and liquidity 

for each portfolio. In nodes 3, 6, and 13, the return is negative, and there is a significant difference between 

them. Also, they are riskier than others. In nodes 11 and 12, although returns are positive, risks are more 

than returns. The highest return is obtained in Node 8. Also, Node 11 is the riskiest portfolio, and Node 

7 is the lowest. There is a hidden risk because liquidity has a significant difference between return, and risk 

in some nodes such as 8, 9, and 11. However, optimal obtained return, risk, and liquidity are 1.097483E+8, 

2.176583E+7 and 4.699963E+7, respectively. Also, the transaction cost is 722,969 units. So, it is better for 

the investor to keep the investment to obtain gain. 

 

Figure 3. Function value in each node. 

4.1. Managerial insights 

The suggested model in this work has three goals: the first goal is wealth, the second goal is to evaluate 

downside risk using semi-deviation, and the third goal is to quantify portfolio liquidity. The suggested linear 

model offers a comprehensive solution. Additionally, the transaction cost is considered, leading to the 

proposal of a novel viewpoint on multi-stage stochastic situations. The goal programming (GP) approach 

is then used to find the best action. The suggested stochastic multi-objective model is reduced to a clear 

single-objective issue using a scenario tree technique and GP. 

Transaction charges apply to the purchasing and selling shares on the stock market. Excessive buying and 

selling of stocks with slight improvement is avoided, and stocks that are steady at all or most times during 

the investment period are chosen by integrating transaction costs in the model, making it more accurate. 

Also, to avoid having issues converting their stocks into cash at the conclusion of the investment term, 

investors may pick equities in their portfolio with a high sales speed by taking the liquidity factor into 

account in the suggested model. 

Each of the outlined situations has a possibility of occurring in an unpredictable environment. The 

suggested model provides an ideal solution and makes profits regardless of how each scenario plays out. 

The investor is required to hold the investment until it matures. Since the best answer takes all periods into 

account, the ultimate result has the possible profit. There is a chance of losing money if the investor sells 

the investment during any of the transitional periods (from period 2 to t-1). He will lose 6198448 units if 

he sells his investment in the second period after Node 6 has occurred. 
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4.2. The expected value of perfect information (EVPI) and value of the stochastic 

solution (VSS) 

A mean-value deterministic multi-period portfolio model is suggested to indicate the originality of this 

study and to show why the multi-stage stochastic portfolio method is preferable. WS stands for "wait 

and see,"; thus, the decision-maker must hold off choosing until all available information has been 

provided. The expected value (EV) solution results from the deterministic model with an average yield. 

The specific objective values for each scenario may be derived using the EV solution. The expected 

value, or the anticipated outcome of employing the EV solution, is then obtained by multiplying these 

objective values by the chance that the associated scenario will occur (EEV). The "here and now" variant 

of stochastic programming, often known as SP, represents its maximized profit value. The anticipated 

value of perfect information (EVPI) and the value of the stochastic solution (VSS) are two indicators 

that are employed in the study. 

The expected value of perfect information (EVPI) is computed to quantify the impact of uncertainty on 

decisions. This metric calculates the anticipated profit loss. Better projections will not be helpful if the 

EVPI is highly low, and inadequate future knowledge might be expensive if it is somewhat large. 

In addition, VSS is used to gauge the stochastic programming model's capacity and to boost profits. 

When parameters are fixed to average values, and the corresponding optimal solution is used, it is the 

difference between the solution of the SP model and the predicted value of the objective function. VSS 

illustrates how much more we can obtain if SP is applied. The SP result is better when VSS is higher 

than the projected result . 

Table 6 displays the pertinent metrics for the case problem in this study. Table 6 shows that SP makes 

more money than EV. The positive VSS values show the importance of letting the amount allotted to 

each stock be changed for various situations at each stage of the decision-making process rather than 

setting its value at the beginning of the planning horizon. Thus, the shortcomings of the conventional 

deterministic model can be improved by the multi-stage approach described in this work. 

Table 6. The related measurements for the case problem. 

      Measurements Return Liquidity 

(1) WS 1.10448E+08 7.80970E+07 

(2) SP 1.09748E+8 4.69996E+7 

(3) EV 6.75278E+7 1.06308E+7 

(4) EVPI=WS-SP 7.00000E+5 3.10974E+7 

(5) VSS=SP-EV 4.22202E+7 3.63688E+7 

(6) (VSS/EV)*100% 62% 342% 

 

5. Conclusions and future research directions 

Stochastic programming models are flexible ways in optimizing financial problems under uncertainty. 

In the prior literature, numerous formulations for the multi-stage financial problem have been proposed 

(Kall, Wallace, & Kall, 1994). The asset/liability management problem was built by Carino et al. (1994) 

using a multi-stage stochastic programming model. A hybrid simulation/tree multi-period stochastic 

programming model has been created for optimal asset distribution (Hibiki, 2006). Scenarios are 

frequently used to simulate random parameters in multi-period stochastic programming models. 

Scenarios are constructed using a tree structure (Mulvey & Ziemba, 1995). The model, which is based 

on the extension of the decision space, takes into consideration the conditional nature of the scenario 

tree. 
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Researchers frequently employed variation as a risk indicator. Downside risk indicators like semi-deviation 

should be replaced with variance since they better reflect actual investment risk, asymmetric return 

distributions, and investor needs. The semi-deviation method, as a risk management approach, describes 

the loss happening over a certain period at a specific confidence level (Ji and Lejeune, 2018). Although the 

previous studies have considered the multi-stage stochastic portfolio selection issue, the majority of these 

studies have only employed one objective function using the mean or risk of the portfolio. Specifically, 

stock liquidity has not been taken into account as an objective function. Additionally, most of these studies 

are nonlinear, and they do not offer a global solution, and accordingly, investors cannot trust such a 

portfolio . 

The suggested model in this work has three goals: the first goal is wealth, the second goal is to evaluate 

downside risk using semi-deviation, and the third goal is to quantify portfolio liquidity. The suggested linear 

model offers a comprehensive solution. Additionally, the transaction cost is considered, leading to the 

proposal of a novel viewpoint on multi-stage stochastic situations. The goal programming (GP) approach 

is then used to find the best action. The suggested stochastic multi-objective model is reduced to a single 

objective issue using GP and a scenario tree technique. Also, the proposed portfolio strategy allows a fair 

trade-off among revenue, risk, and liquidity goals. Providing a real case study, the efficacy of the 

constructed portfolio optimization model and the value of the suggested solution strategy are examined. 

In the case study, there are 14 nodes in the tree structure, creating 8 situations throughout 3 periods. 

Calculated variables like VSS and EVPI demonstrate the robustness of the suggested model. 

In multi-period portfolio selection, this study introduces important issues and new lines of inquiry. As a 

result, we plan to further this study in the following areas: 

Cardinality. The cardinality requirement wasn't used in this study to keep things mathematically simple. 

However, it is advised to employ cardinality to increase investor control over the portfolio . 

Mixed-type uncertainty. The scenario tree idea was used to model. For future studies, it is advised to 

extend this proposed model to account for hybrid uncertainties, such as interval variables and scenario 

trees . 

Portfolio selection. Portfolio optimization might be preceded by portfolio selection. This step helps 

choose suitable stocks for investment. One of the techniques used for selecting a portfolio before the 

optimization is data envelopment analysis (Nouri et al., 2019). 
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